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S.1. PROOF OF PROPOSITION 3

IN THE APPENDIX of Ambrus and Egorov (2013), the proof of Proposition 3
contained only the idea of proof of the result that w(θp) < z(u(θp)) is possible,
so money-burning for high types is possible. Here, we present the complete
proof of this fact.

Our strategy is to build on Example 1, approximate it with a continuous dis-
tribution, and show that, for sufficiently close approximations, the optimal con-
tract must have money-burning. Take U(c) = √

c, W (k) = √
k, y = 1 (then

z(u) = √
1 − u2), β = 1

20 . Take ε ∈ (0� 1
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tion with finite support given by the following p.d.f.:
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We have Gε(θ) = Fε(θ)+ θ(1 −β)fε(θ) equal to

Gε(θ)=
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Direct computations give the threshold θp as a decreasing function of ε on
(0� 1

10), which monotonically increases from 5620−√
28754482

780 = 0�33 to 1
2 as ε de-

creases from 1
10 to 0:

θp(ε) = 1
390ε

(
1010ε+ 180

− √
5
√

3861ε3 + 202538ε2 + 58680ε+ 6480
)
�

In particular, this implies that all individuals with θ ≥ 1
2 are pooled.

Let us prove that this contract must involve money-burning for ε small
enough for all individuals with θ ≥ 1

2 . Recall the values V and Ṽ we defined
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in Example 1 as the ex ante payoff from the optimal contract and the optimal
contract subject to no money-burning in state θh = 10; we had V > Ṽ . In this
example, for ε ∈ (0� 1

10), let us define the ex ante payoff from the optimal con-
tract as Vε and that from the optimal contract with the constraint that types
θ ≥ 1

2 do not burn money (and thus types θ > θp(ε) do not burn money) by
Ṽε. We now prove that lim infε→0 Vε ≥ V and that lim supε→0 Ṽε ≤ Ṽ ; this would
establish that, for ε small enough, money-burning must be used for the types
θ ≥ 1

2 .
We first prove that lim infε→0 Vε ≥ V . Let us take the optimal contract for

the two-type case, Ξ = (cl�kl� ch�kh), and provide these two options, (cl�kl)
and (ch�kh), to all types from 1

10 − ε to 10 + ε. From Proposition 1, we
know that type θl = 1

10 is indifferent between the two contracts; then single-
crossing considerations will imply that types θ < 1

10 will choose (cl�kl), while
types θ > 1

10 will choose (ch�kh). The ex ante utility from such contract
equals
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Clearly, we have limε→0 V
′
ε = Vε. But we have taken some contract, not neces-

sarily optimal, so Vε ≥ V ′
ε for all ε. This implies lim infε→0 Vε ≥ V .

Let us now prove that lim supε→0 Ṽε ≤ Ṽ . Suppose this is not the case,
and there exists δ > 0 and a monotonically decreasing sequence ε1� ε2� � � �

with limn→∞ εn = 0 such that Ṽεn > Ṽ + δ for all n ∈ N. Suppose that Ξεn =
{(cεn(θ)�kεn(θ))}θ∈[1/10−εn�10+εn] is the optimal contract for εn, subject to no
money-burning for types θ ≥ 1

2 . Let us construct a binary contract (cεnl � kεn
l �

cεnh �kεn
h ) in the following way. We let (cεnh �kεn

h )= (cεn(10)�kεn(10)) be the con-
tract that type θh = 10 chooses under Ξεn (as well as all types θ > θp(ε)).
We let (cεnl � kεn

l ) be the contract that maximizes maxθ∈[1/10−εn�εn] θU(cεn(θ)) +
W (kεn(θ)) (the reason we do not take (cεn( 1

10)�k
εn( 1

10)) is that, even in the
optimal contract, the type θl may get a relatively low payoff, which is not a
problem if this type has zero mass, but may be a problem if it has a mass of 10

11 );
suppose that this maximum is reached at θ = θ̃εn .

Let us compute the ex ante payoff from the following contract Ξ̃εn :
(c̃εn(θ)� k̃εn(θ)) = (cεnl � kεn

l ) if θ ≤ 1
10 and (c̃εn(θ)� k̃εn(θ)) = (cεnh �kεn

h ) if θ > 1
10

for different distributions of θ. We first take fεn ; the payoff from this contract
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(note that this contract need not be incentive compatible!) is
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(where uεn
l = U(cεnl ) = √

cεnl , etc. are defined as usual). But under the contract
Ξεn , types θ > 10 get exactly the same allocation as in Ξ̃εn , and types θ < 1

10
get payoff

θuεn
l +wεn

l ≥ |θ− θεn | + θ̃εnu
εn
l +wεn

l

≥ |θ− θεn | + θU
(
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) +W
(
kεn(θ)

)
�

since uεn
l ∈ (0�1). Consequently,
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− Ṽεn ≥ −
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where the second term certainly exceeds the possible difference between Ṽ ′
ε

and Ṽε coming from θ ∈ ( 1
10 �10). But the right-hand side tends to 0 as εn → 0,

so for n high enough, Ṽ ′
εn
> Ṽεn − δ

3 .
Let us now take the binary distribution as in Example 1 and consider the

payoff under Ξ̃εn (again, this contract need not be incentive compatible under
this distribution). We have

Ṽ ′′
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= 10
11

(
1
10

uεn
l +wεn

l

)
+ 1

11
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Clearly,
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so for n high enough, we have Ṽ ′′
εn
> Ṽ ′

εn
− δ

3 .
Consider now the sequence of contracts Ξ̃εn . It is characterized by two pairs

(cεnl � kεn
l ) and (cεnh �kεn

h ); moreover, cεnh + kεn
h = y is satisfied for every n. Let us

pick a subsequence {nr} such that (cεnrl � k
εnr
l ) and (c

εnr
h �k

εnr
h ) converge to some

(ĉl� k̂l) and (ĉh� k̂h); this is possible since B is compact and, moreover, we have
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ĉh + k̂h = y . Denote the ex ante payoff from this contract under the binary
distribution by V̂ . We have

V̂ = 10
11

(
1
10

ûl + ŵl

)
+ 1

11
(10ûh + ŵh);

here we used the fact that U(·) and W (·) are continuous. We have

lim
r→∞

(
V̂ − Ṽ ′′

εnr

) = 0

by construction, and therefore, for r high enough, V̂ > Ṽ ′′
εnr

− δ
3 .

This shows that there is some n such that V̂ > Ṽεn − δ. But we took the
sequence such that Ṽεn > Ṽ + δ for all n, which implies that V̂ > Ṽ . Recall,
however, that Ṽ is the ex ante payoff in the optimal contract with no money-
burning for the high type, and V̂ is the ex ante payoff in one of such contracts.
We would get a contradiction if we prove that the contract (ĉl� k̂l) and (ĉh� k̂h)
is incentive compatible. To do so, let us write the following two incentive com-
patibility constraints that the contract Ξ̃εnr satisfies:

θ̃εnr
u
εnr
l + 1

20
w

εnr
l ≥ θ̃εnu
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20
w
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h ;
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Taking the limits as r → ∞ and using the fact that θ̃εnr
∈ [ 1

10 − εnr �
1

10 ] and thus
tends to 1

10 , we get

1
10

ûl + 1
20

ŵl ≥ 1
10

ûh + 1
20
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10ûh + 1
20

ŵh ≥ 10ûl + 1
20
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This proves that the contract (ĉl� k̂l� ĉh� k̂h) is incentive compatible, and thus
V̂ ≤ Ṽ . We have reached a contradiction which proves that lim supε→0 Ṽε ≤ Ṽ .

Consequently, we have established both lim infε→0Vε ≥ V and lim supε→0 Ṽε ≤
Ṽ . But V > Ṽ ; therefore, for ε close to 0, Vε > Ṽε. This means that there is
ε > 0 for which the optimal contract must involve money-burning in the allo-
cation that types θ > θp(ε) get, and the mass of these agents is at least 1

11 (as
θp(ε) <

1
2 ). This completes the proof that w(θp) < z(u(θp)) is possible. Q.E.D.
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S.2. ADDITIONAL FORMAL RESULTS

PROPOSITION 1: Take any convex functions U(·) and W (·) such that the func-
tion z(u) has at least one point u0 ∈ (0� y) with | dz

du
|u=u0 | ≥ 1 (this would be the

case, for example, if W =U , or if W ′(0)= ∞ and W (0) 	= −∞). Then there exists
an open set of parameter values μ, θl, β (with θh found from μθl +(1−μ)θh = 1)
such that the optimal contract necessarily includes money-burning.

PROOF: Given U(·) and W (·), the set A is fixed. Let w = z(u) be the equa-
tion that determines the upper boundary of this set and let k= | dz

du
(u0)| ≥ 1. By

assumption that W (0) 	= −∞ and convexity of A, the number s = z(u0)−W (0)
U(y)−u0

∈
(k�∞). For any β ∈ (0� 1

s
) ⊂ (0�1), let θl(β) = βs. In this case, u0 will be the

u0 from formulation of Proposition 2 in Ambrus and Egorov (2013). We have

μ

(
(1 −β)

/(
1∣∣∣∣dzdx(u0)

∣∣∣∣
− β

θl(β)

))
= μ

1 −β

1
k

− 1
s

�

But s ∈ (k�∞) and k ≥ 1 imply 1
k

− 1
s
∈ (0�1), which means that inequality

μ

(
(1 −β)

/(
1∣∣∣∣dzdu
∣∣∣∣
u=u0

∣∣∣∣
− β

θl

))
> 1

must hold for β sufficiently close to 0 and μ sufficiently close to 1 (and θl, θh

derived by θl = βs and θh = 1−μθl
1−μ

). Moreover, for μ close to 1, we will have θh

arbitrarily high; in particular, θh > s = θl(β)

β
. The latter implies β > θl

θh
, and we

have β < β∗ by construction, so in this case, indeed, a separating contract is
optimal by Proposition 1 in Ambrus and Egorov (2013). Finally, since varying
u0 would not change the inequalities above, then the set of parameters β�μ�θl

for which money-burning is optimal contains an open set. Q.E.D.
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